The search functionality is under construction.

Author Search Result

[Author] Chao ZHANG(41hit)

21-40hit(41hit)

  • The Design of a Monolithic MSTP ASIC

    Peng WANG  Chao ZHANG  Nan HUA  De-peng JIN  Lie-guang ZENG  

     
    PAPER-Integrated Electronics

      Vol:
    E89-C No:8
      Page(s):
    1248-1254

    A highly integrated monolithic Multi-Service Transport Platform (MSTP) ASIC MSEOSX8-6 incorporating more than 26M transistors has been fabricated with 0.18 µm CMOS technology. The chip is a powerful monolithic MSTP ASIC that supports RPR applications and serves as a generic building block for MSTP network. To accelerate the chip design, we devise a novel methodology called Embedded Reduced Self-Tester (ERST), which integrates the reduced self-tester structure into the chip to shorten the duration of dynamic simulation. Moreover, we divide the design into 12 smaller Hierarchical Layout Blocks (HLB) to enable parallel layout. Resultantly, the whole design has been completed in 5 months, which saves at least 80% of the design cycle in all.

  • Adaptive CI-OSDM in Time-Frequency Selective Fading Channel

    Xiaoming TAO  Chao ZHANG  Jianhua LU  Naoki SUEHIRO  

     
    PAPER-Spread Spectrum Communications

      Vol:
    E91-A No:12
      Page(s):
    3712-3722

    Orthogonal Signal Division Multiplexing (OSDM), also known as SD-OFDM, has been proposed for information transmission with high spectrum efficiency. In this paper, a new signal construction method named Adaptive Carrier Interferometry OSDM (ACI-OSDM) is proposed for time-frequency selective fading channel. Particularly, the Adaptive CI codes originated from CI-OFDM are employed in the frequency domain of OSDM signal. Compared with traditional OFDM, the ACI-OSDM improves the performance considerably of broadband transmission, i.e., spectrum efficiency, Peak-to-Average Power Ratio (PAPR) mitigation and interference cancelation in the high speed mobile environment with multipath emission, e.g. super express train with speed more than 250 km/h.

  • Robust Visual Tracking via Coupled Randomness

    Chao ZHANG  Yo YAMAGATA  Takuya AKASHI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2015/02/04
      Vol:
    E98-D No:5
      Page(s):
    1080-1088

    Tracking algorithms for arbitrary objects are widely researched in the field of computer vision. At the beginning, an initialized bounding box is given as the input. After that, the algorithms are required to track the objective in the later frames on-the-fly. Tracking-by-detection is one of the main research branches of online tracking. However, there still exist two issues in order to improve the performance. 1) The limited processing time requires the model to extract low-dimensional and discriminative features from the training samples. 2) The model is required to be able to balance both the prior and new objectives' appearance information in order to maintain the relocation ability and avoid the drifting problem. In this paper, we propose a real-time tracking algorithm called coupled randomness tracking (CRT) which focuses on dealing with these two issues. One randomness represents random projection, and the other randomness represents online random forests (ORFs). In CRT, the gray-scale feature is compressed by a sparse measurement matrix, and ORFs are used to train the sample sequence online. During the training procedure, we introduce a tree discarding strategy which helps the ORFs to adapt fast appearance changes caused by illumination, occlusion, etc. Our method can constantly adapt to the objective's latest appearance changes while keeping the prior appearance information. The experimental results show that our algorithm performs robustly with many publicly available benchmark videos and outperforms several state-of-the-art algorithms. Additionally, our algorithm can be easily utilized into a parallel program.

  • Two Dimensional Combined Complementary Sequence and Its Application in Multi-Carrier CDMA

    Chao ZHANG  Xiaokang LIN  Mitsutoshi HATORI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    478-486

    Multi-Carrier CDMA (MC-CDMA) has been considered as a combination of the techniques of Code Division Multiple Access (CDMA) and Orthogonal Frequency Division Multiplex (OFDM). However, even until now, the efficient MC-CDMA scheme is still under study because of the inherent bugs in OFDM, such as the troubles caused by Multiple Access Interference (MAI) and Peak to Average Power Ratio (PAPR). In this paper, we present a novel two-dimensional spreading sequence named "Two Dimensional Combined Complementary Sequence" (TDC). If we take this kind of sequences as spreading codes, several prominent advantages can be achieved compared with traditional MC-CDMA. First, it can achieve MAI free in the multi-path transmission both in uplink and downlink. Second, it offers low PAPR value within 3 dB with a quite simple architecture. The last but not the least, the proposed MC-CDMA scheme turns out to be an efficient approach with high bandwidth efficiency, high spreading efficiency and flexible transmission rate enriched by a special shift-and-add modulation. Meanwhile, an algorithm that constructs TDC sequences is discussed in details. Based on above results, we can get the conclusion that the novel TDC sequences and corresponding MC-CDMA architecture have great potential for applications in next generation wireless mobile communications, which require high transmission rate in hostile and complicated channels.

  • Adaptive Analog-to-Information Converter Design with Limited Random Sequence Modulation

    Chao ZHANG  Jialuo XIAO  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    469-476

    Compressive sensing enables quite lower sampling rate compared with Nyquist sampling. As long as the signal is sparsity in some basis, the random sampling with CS can be employed. In order to make CS applied in the practice, the Analog to Information Converter (AIC) should be involved. Based on the Limited Random Sequence (LRS) modulation, the AIC with LRS can be designed with high performance according to the fixed sparsity. However, if the sparsity of the signal varies with time, the original AIC with LRS is not efficient. In this paper, the adaptive AIC which adapts its scheme of LRS according to the variation of the sparsity is proposed and the prototype system is designed. Due to the adaption of the AIC with the scheme of LRS, the sampling rate can be further reduced. The simulation results confirm the performance of the proposed adaptive AIC scheme. The prototype system can successfully fulfil the random sampling and adapt to the variation of sparsity, which verify and consolidate the validity and feasibility for the future implementation of adaptive AIC on chip.

  • Novel Sequence Pair and Set with Three Zero Correlation Windows

    Chao ZHANG  Xiaokang LIN  Mitsutoshi HATORI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E88-B No:4
      Page(s):
    1517-1522

    In this paper, we present a set of sequence pairs which produce zero correlation windows not only in the middle part of the sum of aperiodic correlation functions, but also in the two terminal parts. We name it "Ear Windows." In approximately synchronous CDMA communication system, this set of sequences is able to completely remove the inter-symbol interference (ISI) and multi-user interference (MUI) caused by the multi-path effect if the maximum delay is shorter than the length of the "Ear windows." In addition, it is also feasible in M-ary modulation. The inter-code interference will be mitigated drastically.

  • High Precision Deep Sea Geomagnetic Data Sampling and Recovery with Three-Dimensional Compressive Sensing

    Chao ZHANG  Yufei ZHAO  

     
    LETTER

      Vol:
    E100-A No:9
      Page(s):
    1760-1762

    Autonomous Underwater Vehicle (AUV) can be utilized to directly measure the geomagnetic map in deep sea. The traditional map interpolation algorithms based on sampling continuation above the sea level yield low resolution and accuracy, which restricts the applications such as the deep sea geomagnetic positioning, navigation, searching and surveillance, etc. In this letter, we propose a Three-Dimensional (3D) Compressive Sensing (CS) algorithm in terms of the real trajectory of AUV which can be optimized with the required accuracy. The geomagnetic map recovered with the CS algorithm shows high precision compared with traditional interpolation schemes, by which the magnetic positioning accuracy can be greatly improved.

  • N-Shift Regional Low/Zero Correlation Sequence Generation Based on T-LCZ/ZCZ Sequence Set

    Chao ZHANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:12
      Page(s):
    2361-2362

    N-Shift Regional Low Correlation (NS-RLC) sequences have the low values of the correlation function only in N-shift positions. Especially, N-Shift Regional Zero Correlation (NS-RZC) sequences have the zero values in N-shift positions. In this letter, the generation algorithm of N-shift RLC/RZC sequences derived from Three Low Correlation Zones (T-LCZ) sequence set and Three Zero Correlation Zones (T-ZCZ) sequence set is proposed. In order to highlight the relationship between these sequences, the corresponding theoretical bound is calculated and analyzed.

  • MKGN: A Multi-Dimensional Knowledge Enhanced Graph Network for Multi-Hop Question and Answering

    Ying ZHANG  Fandong MENG  Jinchao ZHANG  Yufeng CHEN  Jinan XU  Jie ZHOU  

     
    PAPER-Natural Language Processing

      Pubricized:
    2021/12/29
      Vol:
    E105-D No:4
      Page(s):
    807-819

    Machine reading comprehension with multi-hop reasoning always suffers from reasoning path breaking due to the lack of world knowledge, which always results in wrong answer detection. In this paper, we analyze what knowledge the previous work lacks, e.g., dependency relations and commonsense. Based on our analysis, we propose a Multi-dimensional Knowledge enhanced Graph Network, named MKGN, which exploits specific knowledge to repair the knowledge gap in reasoning process. Specifically, our approach incorporates not only entities and dependency relations through various graph neural networks, but also commonsense knowledge by a bidirectional attention mechanism, which aims to enhance representations of both question and contexts. Besides, to make the most of multi-dimensional knowledge, we investigate two kinds of fusion architectures, i.e., in the sequential and parallel manner. Experimental results on HotpotQA dataset demonstrate the effectiveness of our approach and verify that using multi-dimensional knowledge, especially dependency relations and commonsense, can indeed improve the reasoning process and contribute to correct answer detection.

  • High Order Limited Random Sequence in Analog-to-Information Converter for Distributed Compressive Sensing

    Chao ZHANG  Zhipeng WU  

     
    PAPER-Digital Signal Processing

      Vol:
    E95-A No:11
      Page(s):
    1998-2006

    Limited Random Sequence (LRS) is quite important for Analog-to-Information Converter (AIC) because it determines the random sampling scheme and the resultant performance. LRS is established with the elements of “0” and “1”. The “1” appears randomly in the segment of the sequence, so that the production of the original signal and LRS can be considered as the approximation of the random sampling of the original signal. The random sampling result can perfectly recover the signal with Compressive Sensing (CS) algorithm. In this paper, a high order LRS is proposed for the AIC design in Distributed Compressive Sensing (DCS), which has the following three typical features: 1) The high order LRS has the elements of integer which can indicate the index number of the sensor in DCS. 2) High order LRS can adapt to the sparsity variation of the original signal detected by each sensor. 3) Employing the AIC with high order LRS, the DCS algorithm can recover the signal with very low sampling rate, usually above 2 orders less than the traditional distributed sensors. In the paper, the scheme and the construction algorithm of high order LRS are proposed. The performance is evaluated with the application studies of the distributed sensor network and the camera picture correspondingly.

  • Safety Evaluation for Upgraded Avionics System

    Chao ZHANG  Xiaomu SHI  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Vol:
    E99-A No:4
      Page(s):
    849-852

    Safety is the foremost requirement of avionics systems on aircraft. So far, avionics systems have evolved into an integrated system, i.e., integrated avionics system, and the derivative functions occur when the avionics systems are upgraded. However, the traditional safety analysis method is insufficient to be utilized in upgraded avionics systems due to these derivative functions. In this letter, a safety evaluation scheme is proposed to quantitatively evaluate the safety of the upgraded avionics systems. All the functions including the derivative functions can be traced and covered. Meanwhile, a set of safety issues based on different views is established to evaluate the safety capability from three layers, i.e., the mission layer, function layer and resource layer. The proposed scheme can be considered as an efficient scheme in the safety validation and verification in the upgraded avionics systems.

  • N-Shift ZCZ Pilot Sequence Design for High Accuracy Navigation Based on Broadband Air-to-Ground Communication System

    Chao ZHANG  Keke PANG  Lu MA  

     
    LETTER

      Vol:
    E98-A No:11
      Page(s):
    2270-2273

    The pilot symbols in the broadband Air-to-Ground (A/G) communications system, e.g., L-band Digital Aeronautical Communications System (L-DACS1), are expected to be also utilized for navigation. In order to identify the co-channel signals from different Ground Stations (GSs), the N-Shift Zero Correlation Zone (NS-ZCZ) sequences are employed for pilot sequences. The ideal correlation property of the proposed pilot sequence in ZCZ can maintain the signal with less co-channel interference. The simulation confirms that the more co-channel GSs are employed, the higher navigation accuracy can be achieved.

  • Statistical Channel Modeling for Aeronautical Cognitive Radio Communications

    Chao ZHANG  Junzhou YU  

     
    LETTER

      Vol:
    E97-A No:11
      Page(s):
    2170-2173

    Due to the high speed mobile environment, the aeronautical Cognitive Radio (CR) communications base on the channel with the time-variant stochastic non-continuous spectrum. The traditional fading channel models, such as Rayleigh, Rice, Nakagami-m and multipath channel models, can not describe the whole property of the channels of CR communications. In this letter, the statistical channel modeling scheme for aeronautical CR communications is proposed with a M/M/s(1) queuing model, which properly describes the random spectrum occupation of the primary users, i.e. aircrafts in aeronautical communications. The proposed channel model can be easily utilized in the channel simulation to testify the validity and efficiency of the aeronautical CR communications.

  • Narrowband Interference Mitigation Based on Compressive Sensing for OFDM Systems

    Sicong LIU  Fang YANG  Chao ZHANG  Jian SONG  

     
    LETTER-Noise and Vibration

      Vol:
    E98-A No:3
      Page(s):
    870-873

    A narrowband interference (NBI) estimation and mitigation method based on compressive sensing (CS) for communication systems with repeated training sequences is investigated in this letter. The proposed CS-based differential measuring method is performed through the differential operation on the inter-block-interference-free regions of the received adjacent training sequences. The sparse NBI signal can be accurately recovered from a time-domain measurement vector of small size under the CS framework, without requiring channel information or dedicated resources. Theoretical analysis and simulation results show that the proposed method is robust to NBI under multi-path fading channels.

  • Pseudo-Periodic CCK Modulation in Wireless LAN Fighting against Multi-Path Interference

    Chao ZHANG  Xiaokang LIN  Mitsutoshi HATORI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E87-B No:10
      Page(s):
    3140-3143

    In this letter, we enhance Complementary Code Keying (CCK) modulation with Pseudo-Periodic Sequence. It has been proved that the new Pseudo-Periodic CCK modulation is more efficient and robust fighting against multi-path interference. In order to support our new scheme, we design and implement the corresponding simulation. The in-depth analysis of the reason why Pseudo-Periodic Sequence can do a favor to CCK is also presented and emphasized.

  • General Method to Construct LS Codes by Complete Complementary Sequences

    Chao ZHANG  Xiaokang LIN  Shigeki YAMADA  Mitsutoshi HATORI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:8
      Page(s):
    3484-3487

    Large Area Synchronized (LAS)-CDMA, actually composed of LA codes and pulse compressing LS codes, has been proposed as a most promising scheme in 3G and 4G wireless communications. LS codes are famous for the Zero Correlation Zone (ZCZ) in the auto-correlation and cross-correlation functions, which endows the codes with the capability to perfectly reduce the Multiple Access Interference (MAI) and Inter Symbol Interference (ISI) if the maximum transmission delay is less than the length of ZCZ. In this letter, we provide a general and systematic method to construct LS codes from the set of complete complementary sequences. Our method is much more general than the ordinary LS construction method revealed previously.

  • Geometric Predicted Unscented Kalman Filtering in Rotate Magnetic Ranging

    Chao ZHANG  Keke PANG  Yaxin ZHANG  

     
    LETTER-Measurement Technology

      Vol:
    E96-A No:6
      Page(s):
    1501-1504

    Rotate magnetic field can be used for ranging, especially the environment where electronic filed suffers a deep fading and attenuation, such as drilling underground. However, magnetic field is still affected by the ferromagnetic materials, e.g., oil casing pipe. The measurement error is not endurable for single measurement. In this paper, the Geometric Predicted Unscented Kalman Filtering (GP-UKF) algorithm is developed for rotate magnetic ranging system underground. With GP-UKF, the Root Mean Square Error (RMSE) can be suppressed. It is really important in a long range detection by magnetic field, i.e., more than 50 meters.

  • Trellis Coded Orbital Angular Momentum Modulation

    Chao ZHANG  Lu MA  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:8
      Page(s):
    1618-1621

    Trellis coded modulation (TCM) concept is applied to the mode constellation points of orbital angular momentum (OAM) modulation. OAM modulation considers the multiple OAM modes as additional constellation points and maps a first part of a block of information bits to the transmitting OAM modes. Therefore, spatial multiplexing gains are retained and spectral efficiency is boosted. The second part of the block of information bits is mapped to a complex symbol using conventional digital modulation schemes. At any particular time instant, only one OAM mode is active. The receiver estimates the transmitted symbol and the active OAM mode, then uses the two estimates to retrieve the original block of data bits. Simulation reveals that with the TCM employed both for the OAM constellation points and the signal constellation points, a considerable bit error rate (BER) gain can be obtained under all turbulence conditions, compared with that of the no coding scheme.

  • High-Speed and Local-Changes Invariant Image Matching

    Chao ZHANG  Takuya AKASHI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2015/08/03
      Vol:
    E98-D No:11
      Page(s):
    1958-1966

    In recent years, many variants of key point based image descriptors have been designed for the image matching, and they have achieved remarkable performances. However, to some images, local features appear to be inapplicable. Since theses images usually have many local changes around key points compared with a normal image, we define this special image category as the image with local changes (IL). An IL pair (ILP) refers to an image pair which contains a normal image and its IL. ILP usually loses local visual similarities between two images while still holding global visual similarity. When an IL is given as a query image, the purpose of this work is to match the corresponding ILP in a large scale image set. As a solution, we use a compressed HOG feature descriptor to extract global visual similarity. For the nearest neighbor search problem, we propose random projection indexed KD-tree forests (rKDFs) to match ILP efficiently instead of exhaustive linear search. rKDFs is built with large scale low-dimensional KD-trees. Each KD-tree is built in a random projection indexed subspace and contributes to the final result equally through a voting mechanism. We evaluated our method by a benchmark which contains 35,000 candidate images and 5,000 query images. The results show that our method is efficient for solving local-changes invariant image matching problems.

  • Fractional Pilot Reuse in Massive MIMO System

    Chao ZHANG  Lu MA  

     
    LETTER-Communication Theory and Signals

      Vol:
    E98-A No:11
      Page(s):
    2356-2359

    The pilot contamination is a serious problem which hinders the capacity increasing in the massive MIMO system. Similar to Fractional Frequency Reuse (FFR) in the OFDMA system, Fractional Pilot Reuse (FPR) is proposed for the massive MIMO system. The FPR can be further classified as the strict FPR and soft FPR. Meanwhile, the detailed FPR schemes with pilot assignment and the mathematical models are provided. With FPR, the capacity and the transmission quality can be improved with metrics such as the higher Signal to Interference and Noise Ratio (SINR) of the pilots, the higher coverage probability, and the higher system capacity.

21-40hit(41hit)